Linear perturbations of a constant coefficient differential equation subject to mild integral smallness conditions
نویسندگان
چکیده
منابع مشابه
Linear Perturbations of a Nonoscillatory Second Order Differential Equation Ii
Let y1 and y2 be principal and nonprincipal solutions of the nonoscillatory differential equation (r(t)y′)′ + f(t)y = 0. In an earlier paper we showed that if ∫∞(f − g)y1y2 dt converges (perhaps conditionally), and a related improper integral converges absolutely and sufficently rapidly, then the differential equation (r(t)x′)′ + g(t)x = 0 has solutions x1 and x2 that behave asymptotically like...
متن کاملPiecewise Constant Solution of Non Linear Volterra Integral Equation
In this paper, modification in the computational methods, for solving Non-linear Volterra integral equations, is presented. Here, two piecewise constant methods are considered for obtaining the solutions. The first method is based on Walsh Functions (WF) and the second method is via Block Pulse Functions (BPF). Comparison between the two methods is presented by calculating the errors vis-à-vis ...
متن کاملRothe Time-discretization Method Applied to a Quasilinear Wave Equation Subject to Integral Conditions
Recently, the study of initial-boundary value problems for hyperbolic equations with boundary integral conditions has received considerable attention. This kind of conditions has many important applications. For instance, they appear in the case where a direct measurement quantity is impossible; however, their mean values are known. In this paper, we deal with a class of quasilinear hyperbolic ...
متن کاملPolynomial Solutions to Constant Coefficient Differential Equations
Let Dx, ... , Dr e C[d/dxx, ... , d/dxn) be constant coefficient differential operators with zero constant term. Let S = {fe C[xx,... , x„]\Dj(f) = 0 for all 1 < j < r) be the space of polynomial solutions to the system of simultaneous differential equations Dj(f) = 0. It is proved that S is a module over 3¡(V), the ring of differential operators on the affine scheme V with coordinate ring C[d/...
متن کاملNumerical Solution of Heun Equation Via Linear Stochastic Differential Equation
In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 1986
ISSN: 0011-4642,1572-9141
DOI: 10.21136/cmj.1986.102121